120 research outputs found

    Operational ocean models in the Adriatic Sea: a skill assessment

    No full text
    International audienceIn the framework of the Mediterranean Forecasting System project (MFS) sub-regional and regional numerical ocean forecasting systems performance are assessed by mean of model-model and model-data comparison. Three different operational systems have been considered in this study: the Adriatic REGional Model (AREG); the AdriaROMS and the Mediterranean Forecasting System general circulation model (MFS model). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM (Blumberg and Mellor, 1987) and ROMS (Shchepetkin and McWilliams, 2005) respectively, while MFS model is based on OPA (Madec et al., 1998) code. The assessment has been done by means of standard scores. The data used for operational systems assessment derive from in-situ and remote sensing measurements. In particular a set of CTDs covering the whole western Adriatic, collected in January 2006, one year of SST from space born sensors and six months of buoy data. This allowed to have a full three-dimensional picture of the operational forecasting systems quality during January 2006 and some preliminary considerations on the temporal fluctuation of scores estimated on surface (or near surface) quantities between summer 2005 and summer 2006. In general, the regional models are found to be colder and fresher than observations. They eventually outperform the large scale model in the shallowest locations, as expected. Results on amplitude and phase errors are also much better in locations shallower than 50 m, while degraded in deeper locations, where the models tend to have a higher homogeneity along the vertical column compared to observations. In a basin-wide overview, the two regional models show some dissimilarities in the local displacement of errors, something suggested by the full three-dimensional picture depicted using CTDs, but also confirmed by the comparison with SSTs. In locations where the regional models are mutually correlated, the aggregated mean-square-error has been found to be lower, which is a useful outcome of having several operational systems in the same region

    Operational ocean models in the Adriatic Sea: a skill assessment

    Get PDF
    In the framework of the Mediterranean Forecasting System (MFS) project, the performance of regional numerical ocean forecasting systems is assessed by means of model-model and model-data comparison. Three different operational systems considered in this study are: the Adriatic REGional Model (AREG); the Adriatic Regional Ocean Modelling System (AdriaROMS) and the Mediterranean Forecasting System General Circulation Model (MFS-GCM). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM and ROMS, respectively, while MFS-GCM is an OPA based system. The assessment is done through standard scores. In situ and remote sensing data are used to evaluate the system performance. In particular, a set of CTD measurements collected in the whole western Adriatic during January 2006 and one year of satellite derived sea surface temperature measurements (SST) allow to asses a full three-dimensional picture of the operational forecasting systems quality during January 2006 and to draw some preliminary considerations on the temporal fluctuation of scores estimated on surface quantities between summer 2005 and summer 2006. <br><br> The regional systems share a negative bias in simulated temperature and salinity. Nonetheless, they outperform the MFS-GCM in the shallowest locations. Results on amplitude and phase errors are improved in areas shallower than 50 m, while degraded in deeper locations, where major models deficiencies are related to vertical mixing overestimation. In a basin-wide overview, the two regional models show differences in the local displacement of errors. In addition, in locations where the regional models are mutually correlated, the aggregated mean squared error was found to be smaller, that is a useful outcome of having several operational systems in the same region

    Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999 – an application to the Italian Seas

    Get PDF
    The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the <i>r-largest annual maxima</i> and the <i>peak-over-threshold</i>. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The <i>r-largest annual maxima</i> method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century

    Study of the discharge gas trapping during thin film growth

    Get PDF
    Discharge gas trapping in thin films produced by sputtering is known to be due to high energy neutrals bouncing back from the cathode. Qualitatively, the phenomenon is enhanced by raising the discharge voltage and is strongly dependent on the atomic masses of the discharge gas and of the cathode material. In addition to these known effects it is shown that, for a given gas, the trapped amount decreases with increasing the melting temperature of the deposited material. The results obtained both by sample melting and laser ablation are presented and discussed

    Water Masses Variability in Inner Kongsfjorden (Svalbard) During 2010–2020

    Get PDF
    Kongsfjorden is an Arctic fjord located in the Svalbard archipelago. Its hydrography is influenced by the warm and saline Atlantic Water (AW) in the West Spitsbergen Current and the cold and fresh Polar Water circulating on the shelf. We assess the so-called atlantification of Kongsfjorden in the 2010–2020 decade by inspecting modifications in water properties and water masses variability through moored data and summer CTD surveys. Atlantification in this fjord has emerged as an increasing temperature and salinity, resulting from enhanced advection of Atlantic waters from the West Spitsbergen Current. The water column in inner Kongsfjorden warmed by 0.13°C/yr at 35 m and 0.06°C/yr at 85 m depth from 2010 to 2020, while salinity increased by 0.3 PSU. Depth-averaged temperatures have increased by 0.26°C/yr in the warmest months of the year, whereas they appear relatively stable in the coldest months. Both temperature and salinity present a linear regression change point in January 2017, with latter years featuring decreasing values. Highly diluted AW is found at the beginning of the decade, which give way to more and more pure AW in latter years, culminating in extensive intrusions in 2016 and 2017 determining the warmest and saltiest conditions over the decade in inner Kongsfjorden. Observations in the 2010–2020 decade confirm that Kongsfjorden has transitioned to an Atlantic-type fjord, featuring depleted sea ice conditions and rather regular shallow intrusions of AW in summer and frequently also in winter. Although single intrusions of AW are associated with dynamical events on the shelf, we found that the long-term temperature evolution in the inner Kongsfjord is consistent with the meridional temperature transport of the West Spitsbergen Current. The AW current flowing northward from lower latitudes along the western Svalbard archipelago thus has profoundly driven local conditions in the inner fjord in this decade

    Along-Path Evolution of Biogeochemical and Carbonate System Properties in the Intermediate Water of the Western Mediterranean

    Get PDF
    A basin-scale oceanographic cruise (OCEANCERTAIN2015) was carried out in the Western Mediterranean (WMED) in summer 2015 to study the evolution of hydrological and biogeochemical properties of the most ubiquitous water mass of the Mediterranean Sea, the Intermediate Water (IW). IW is a relatively warm water mass, formed in the Eastern Mediterranean (EMED) and identified by a salinity maximum all over the basin. While it flows westward, toward and across the WMED, it gradually loses its characteristics. This study describes the along-path changes of thermohaline and biogeochemical properties of the IW in the WMED, trying to discriminate changes induced by mixing and changes induced by interior biogeochemical processes. In the first part of the path (from the Sicily Channel to the Tyrrhenian Sea), respiration in the IW interior was found to have a dominant role in determining its biogeochemical evolution. Afterward, when IW crosses regions of enhanced vertical dynamics (Ligurian Sea, Gulf of Lion and Catalan Sea), mixing with surrounding water masses becomes the primary process. In the final part of the investigated IW path (the Menorca-Mallorca region), the role of respiration is further masked by the effects of a complex circulation of IW, indicating that short-term sub-regional hydrological processes are important to define IW characteristics in the westernmost part of the investigated area. A pronounced along-path acidification was detected in IW, mainly due to remineralization of organic matter. This induced a shift of the carbonate equilibrium toward more acidic species and makes this water mass increasingly less adequate for an optimal growth of calcifying organisms. The carbonate buffering capacity also decreases as IW flows through the WMED, making it more exposed to the adverse effects of a decreasing pH. The present analysis indicates that IW evolution in the sub-basins of the WMED is currently driven by complex hydrological and biogeochemical processes, which could be differently impacted by coming climate changes, in particular considering expected increases of extreme meteorological events, mainly due to the warming of the Mediterranean basin

    Operativni sustav za prognoziranje hipoksije u sjevernom Jadranu

    Get PDF
    The northern Adriatic Sea (NA), the northernmost region of the Mediterranean Sea, is affected by strong anthropogenic pressure (e.g., tourism, fisheries, maritime traffic, discharge from agriculture and industry), superimposed to a large river runoff. The consequent pressure exerted on the NA ecosystem either triggers or worsens massive mucilage insurgence, harmful algal blooms, eutrophication and even anoxic/hypoxic events. This work focuses on the anoxic/hypoxic events. During the summer-autumn period, the NA is often exposed to these events, which can be categorised as either coastal (relatively frequent south of the Po River delta during the summer) and offshore (rare, affecting wider areas). In order to improve our knowledge about these processes and to meet the needs of local governments and decision makers, an operational system for monitoring and forecasting anoxic and hypoxic events has been set up in the framework of the EU LIFE "EMMA" project. The system is composed of a meteo-oceanographic buoy; a numerical prediction system based on the Regional Ocean Modelling System (ROMS), including a Fasham-type module for biogeochemical fluxes; and periodic oceanographic surveys. Every day since June 2007, the system provides 3-hourly forecasts of marine currents, thermohaline and biogeochemical fields for the incoming three days. The system has demonstrated its ability to produce accurate temperature forecasts and relatively good salinity and dissolved oxygen forecasts. The Root Mean Square Error of the dissolved oxygen forecast was largely due to the mean bias. The system is currently being improved to include a better representation of benthic layer biogeochemical processes and several adjustments of the model. While developing model improvements, dissolved oxygen forecasts were improved with the removal of the 10-day mean bias.Sjeverni Jadran (NA), najsjeverniji dio Sredozemnog mora, pod utjecajem je jakog antropogenog djelovanja (poput turizma, ribarenja, morskog prometa, istjecanje onečišćujućih tvari u poljoprivredi i industriji) te dodatno, velikog dotoka rijeka. Posljedično, djelovanje na NA ekosustav potiče ili pojačava uzdizanje sluzavih nakupina, štetno cvjetanje algi, eutrofikaciju pa čak i događaje anoksije/hipoksije. Ovaj se rad fokusira na anoksiju/hipoksiju. Tijekom ljetno-jesenskog razdoblja, NA je često izložen ovim doga|ajima, koji se mogu kategorizirati kao obalni (relativno učestali južno od delte rijeke Po ljeti) ili udaljeni od obale (rijetki, zahvaćajući šira područja). Kako bi poboljšali poznavanje tih procesa te zbog potreba lokalne uprave, uspostavljen je operativni sustav za praćenje i prognoziranje anoksije i hipoksije u okviru EU LIFE "EMMA" projekta. Sustav se sastoji od meteorološko-oceanografske plutače; sustava za numeričku prognozu, koji se temelji na regionalnom oceanografskom modelu (ROMS), uključujući modul Fasham-tipa za biogeokemijske tokove; i periodičnim oceanografskim istraživanjima. Svakog dana, počev od lipnja 2007, sustav omogućava 3-satne prognoze morskih struja te termohalina i biogeokemijska polja za sljedeća tri dana. Sustav se pokazao sposobnim za davanje točnih prognoza temperature i relativno dobrih prognoza saliniteta i otopljenog kisika. Korijen srednje kvadratne pogreške prognoziranog otopljenog kisika postojao je uglavnom zbog srednje pristranosti (biasa). Sustav je trenutno poboljšan tako da uključuje bolji prikaz biogeokemijskih procesa u području sloja bentosa i nekoliko prilagodba modela. Tijekom poboljšavanja modela, uklanjanjem 10-dnevne srednje pristranosti (biasa) poboljšane su prognoze otopljenog kisika

    Rapid response to climate change in a marginal sea

    Get PDF
    The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. The Sicily Channel is a choke point separating the sea in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here, we report and analyse a long-term record (1993–2016) of the thermohaline properties of the Intermediate Water that crosses the Sicily Channel, showing increasing temperature and salinity trends much stronger than those observed at intermediate depths in the global ocean. We investigate the causes of the observed trends and in particular determine the role of a changing climate over the Eastern Mediterranean, where the Intermediate Water is formed. The long-term Sicily record reveals how fast the response to climate change can be in a marginal sea like the Mediterranean Sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean

    Experimental Studies of Carbon Coatings as Possible Means of Suppressing Beam Induced Electron Multipacting in the CERN SPS

    Get PDF
    Electron cloud build-up is a major limitation for the operation of the SPS with LHC beam above nominal intensity. These beams are envisaged in the frame of the LHC luminosity upgrade and will be available from the new injectors LPSPL and PS2. A series of studies have been conducted in order to identify possible means to suppress electron multipacting by coating the existing SPS vacuum chambers with thin films of amorphous carbon. After a description of the experimental apparatus installed in the SPS, the results of the tests performed with beam in 2008 will be presented

    Towards the implementation of laser engineered surface structures for electron cloud mitigation

    Get PDF
    The LHC operation has proven that the electron cloud could be a significant limiting factor in machine performance, in particular for future High Luminosity LHC (HL-LHC) beams. Electron clouds, generated by electron multipacting in the beam pipes, leads to beam instabilities and beam-induced heat load in cryogenic systems. Laser Engineered Surface Structures (LESS) is a novel surface treatment which changes the morphology of the internal surfaces of vacuum chambers. The surface modification results in a reduced secondary electron yield (SEY) and, consequently, in the eradication of the electron multipacting. Low SEY values of the treated surfaces and flexibility in choosing the laser parameters make LESS a promising treatment for future accelerators. LESS can be applied both in new and existing accelerators owing to the possibility of automated in-situ treatment. This approach has been developed and optimised for the LHC beam screens in which the electron cloud has to be mitigated before the HL-LHC upgrade. We will present the latest steps towards the implementation of LESS
    • …
    corecore